class: center, middle, inverse, title-slide .title[ # Modeling Volatility and Dependence of European Carbon and Energy Prices ] .subtitle[ ## Jonathan Berrisch, Sven Pappert, Florian Ziel, Antonia Arsova ] .author[ ### University of Duisburg-Essen ] .date[ ### 2023-07-05 ] --- # Motivation .pull-left[ </br> - Understanding European Allowances (EUA) dynamics is important for several fields: - - Portfolio & Risk Management, - - Sustainability Planing - - Political decisions - - ... EUA prices are obviously connected to the energy market How can the dynamics be characterized? ] .pull-right[ </br> - Several Questions arise: - - Data (Pre)processing - - Modeling Approach - - Evaluation ] ??? On their own, EUA prices are ’just’ a random walk. The first differences are stationary and heteroscedastic. Autoregressive Volatility modeling (ARCH, GARCH, . . .) is sensible! --- # Data - EUA, natural gas, Brent crude oil, coal - March 15, 2010, until October 14, 2022 - Data was normalized w.r.t. `\(\text{CO}_2\)` emissions - Emission-adjusted prices reflects one tonne of `\(\text{CO}_2\)` - We adjusted for inflation by Eurostat's HICP, excluding energy - Log transformation of the data to stabilize the variance - ADF Test: All series are stationary in first differences - Johansen’s likelihood ratio trace test suggests two cointegrating relationships (levels) - Johansen’s likelihood ratio trace test suggests no cointegrating relationships (logs) --- # Data <img src="data:image/png;base64,#index_files/figure-html/unnamed-chunk-1-1.svg" style="display: block; margin: auto;" /> --- # Modeling Approach: Overview </br> #### VECM: Vector Error Correction Model - Modeling the expectaion - Captures the long-run cointegrating relationship - Different cointegrating ranks, including rank zero (no cointegration) #### GARCH: Generalized Autoregressive Conditional Heteroscedasticity - Captures the variance dynamics #### Copula: Captures the dependence structure - Captures: conditional cross-sectional dependence structure - Dependence allowed to vary over time --- # Modeling Approach: Overview .pull-left[ - Let `\(\boldsymbol{X}_t\)` be a `\(K\)`-dimensional vector at time `\(t\)` - The forecasting target: - Conditional joint distribution - `\(F_{\boldsymbol{X}_t|\mathcal{F}_{t-1}}\)` - `\(\mathcal{F}_{t}\)` is the sigma field generated by all information available up to and including time `\(t\)` Sklars theorem: decompose target into - marginal distributions: `\(F_{X_{k,t}|\mathcal{F}_{t-1}}\)` for `\(k=1,\ldots, K\)`, and - copula function: `\(C_{\boldsymbol{U}_{t}|\mathcal{F}_{t - 1}}\)` ] .pull-right[ Let `\(\boldsymbol{x}_t= (x_{1,t},\ldots, x_{K,t})^\intercal\)` be the realized values It holds that: `\begin{align} F_{\boldsymbol{X}_t|\mathcal{F}_{t-1}}(\boldsymbol{x}_t) = C_{\boldsymbol{U}_{t}|\mathcal{F}_{t - 1}}(\boldsymbol{u}_t) \nonumber \end{align}` with: `\(\boldsymbol{u}_t =(u_{1,t},\ldots, u_{K,t})^\intercal\)`, `\(u_{k,t} = F_{X_{k,t}|\mathcal{F}_{t-1}}(x_{k,t})\)` For brewity we drop the conditioning on `\(\mathcal{F}_{t-1}\)`. The model can be specified as follows `\begin{align} F(\boldsymbol{x}_t) = C \left[\mathbf{F}(\boldsymbol{x}_t; \boldsymbol{\mu}_t, \boldsymbol{ \sigma }_{t}^2, \boldsymbol{\nu}, \boldsymbol{\lambda}); \Xi_t, \Theta\right] \nonumber \end{align}` `\(\Xi_{t}\)` denotes time-varying dependence parameters `\(\Theta\)` denotes time-invariant dependence parameters We take `\(C\)` as the `\(t\)`-copula ] --- # Modeling Approach: Mean and Variance .pull-left[ #### Individual marginal distributions: `$$\mathbf{F} = (F_1, \ldots, F_K)^{\intercal}$$` #### Generalized non-central t-distributions - To account for heavy tails - Time varying - expectation: `\(\boldsymbol{\mu}_t = (\mu_{1,t}, \ldots, \mu_{K,t})^{\intercal}\)` - variance: `\(\boldsymbol{\sigma}_{t}^2 = (\sigma_{1,t}^2, \ldots, \sigma_{K,t}^2)^{\intercal}\)` - Time invariant - degrees of freedom: `\(\boldsymbol{\nu} = (\nu_1, \ldots, \nu_K)^{\intercal}\)` - noncentrality: `\(\boldsymbol{\lambda} = (\lambda_1, \ldots, \lambda_K)^{\intercal}\)` ] .pull-right[ #### VECM Model `\begin{align} \Delta \boldsymbol{\mu}_t = \Pi \boldsymbol{x}_{t-1} + \Gamma \Delta \boldsymbol{x}_{t-1} \nonumber \end{align}` where `\(\Pi = \alpha \beta^{\intercal}\)` is the cointegrating matrix of rank `\(r\)`, `\(0 \leq r\leq K\)`. #### GARCH model `\begin{align} \sigma_{i,t}^2 = & \omega_i + \alpha^+_{i} (\epsilon_{i,t-1}^+)^2 + \alpha^-_{i} (\epsilon_{i,t-1}^-)^2 + \beta_i \sigma_{i,t-1}^2 \nonumber \end{align}` where `\(\epsilon_{i,t-1}^+ = \max\{\epsilon_{i,t-1}, 0\}\)` ... Separate coefficients for positive and negative innovations to capture leverage effects. ] --- # Modeling Approach: Dependence .pull-left[ #### Time-varying dependence parameters `\begin{align*} \Xi_{t} = & \Lambda\left(\boldsymbol{\xi}_{t}\right) \\ \xi_{ij,t} = & \eta_{0,ij} + \eta_{1,ij} \xi_{ij,t-1} + \eta_{2,ij} z_{i,t-1} z_{j,t-1}, \end{align*}` `\(\xi_{ij,t}\)` is a latent process `\(z_{i,t}\)` denotes the `\(i\)`-th standardized residual from time series `\(i\)` at time point `\(t\)` `\(\Lambda(\cdot)\)` is a link function - ensures that `\(\Xi_{t}\)` is a valid variance covariance matrix - ensures that `\(\Xi_{t}\)` does not exceed its support space and remains semi-positive definite ] .pull-right[ #### Maximum Likelihood Estimation All parameters can be estimated jointly. Using conditional independence: `\begin{align*} L = f_{X_1} \prod_{i=2}^T f_{X_i|\mathcal{F}_{i-1}}, \end{align*}` with multivariate conditional density: `\begin{align*} f_{\mathbf{X}_t}(\mathbf{x}_t | \mathcal{F}_{t-1}) = c\left[\mathbf{F}(\mathbf{x}_t;\boldsymbol{\mu}_t, \boldsymbol{\sigma}_{t}^2, \boldsymbol{\nu}, \boldsymbol{\lambda});\Xi_t, \Theta\right] \cdot \\ \prod_{i=1}^K f_{X_{i,t}}(\mathbf{x}_t;\boldsymbol{\mu}_t, \boldsymbol{\sigma}_{t}^2, \boldsymbol{\nu}, \boldsymbol{\lambda}) \end{align*}` The copula density `\(c\)` can be derived analytically. ] --- # Study Design and Evaluation .pull-left[ #### Rolling-window forecasting study - 3257 observations total - Window size: 1000 days (~ four years) - Forecasting 30-steps-ahead => 2227 potential starting points We sample 250 to reduce computational cost We draw `\(2^{12}= 2048\)` trajectories from the joint predictive distribution ] .pull-left[ #### Evaluation Forecasts are evaluated by the energy score (ES) `\begin{align*} \text{ES}_t(F, \mathbf{x}_t) = \mathbb{E}_{F} \left(||\tilde{\mathbf{X}}_t - \mathbf{x}_t||_2\right) - \frac{1}{2} \mathbb{E}_F \left(||\tilde{\mathbf{X}}_t - \tilde{\mathbf{X}}_t'||_2 \right) \end{align*}` where `\(\mathbf{x}_t\)` is the observed `\(K\)`-dimensional realization and `\(\tilde{\mathbf{X}}_t\)`, respectively `\(\tilde{\mathbf{X}}_t'\)` are independent random vectors distributed according to `\(F\)` For univariate cases the Energy Score becomes the Continuous Ranked Probability Score (CRPS) ] --- # Energy Scores .pull-left[ Relative improvement in ES compared to `\(\text{RW}^{\sigma, \rho}\)` Cellcolor: w.r.t test statistic of Diebold-Mariano test (testing wether the model outperformes the benchmark, greener = better). <table class=" lightable-paper table table-condensed" style='font-family: "Arial Narrow", arial, helvetica, sans-serif; width: auto !important; margin-left: auto; margin-right: auto; font-size: 16px; width: auto !important; margin-left: auto; margin-right: auto;'> <thead> <tr> <th style="text-align:left;"> Model </th> <th style="text-align:right;"> \(\text{ES}^{\text{All}}_{1-30}\) </th> <th style="text-align:right;"> \(\text{ES}^{\text{EUA}}_{1-30}\) </th> <th style="text-align:right;"> \(\text{ES}^{\text{Oil}}_{1-30}\) </th> <th style="text-align:right;"> \(\text{ES}^{\text{NGas}}_{1-30}\) </th> <th style="text-align:right;"> \(\text{ES}^{\text{Coal}}_{1-30}\) </th> <th style="text-align:right;"> \(\text{ES}^{\text{All}}_{1}\) </th> <th style="text-align:right;"> \(\text{ES}^{\text{All}}_{5}\) </th> <th style="text-align:right;"> \(\text{ES}^{\text{All}}_{30}\) </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> \(\textrm{RW}^{\sigma, \rho}_{}\) </td> <td style="text-align:right;background-color: rgba(189, 189, 189, 1) !important;"> 161.96 </td> <td style="text-align:right;background-color: rgba(189, 189, 189, 1) !important;"> 10.06 </td> <td style="text-align:right;background-color: rgba(189, 189, 189, 1) !important;"> 37.94 </td> <td style="text-align:right;background-color: rgba(189, 189, 189, 1) !important;"> 146.73 </td> <td style="text-align:right;background-color: rgba(189, 189, 189, 1) !important;"> 13.22 </td> <td style="text-align:right;background-color: rgba(189, 189, 189, 1) !important;"> 5.56 </td> <td style="text-align:right;background-color: rgba(189, 189, 189, 1) !important;"> 13.28 </td> <td style="text-align:right;background-color: rgba(189, 189, 189, 1) !important;"> 34.29 </td> </tr> <tr> <td style="text-align:left;"> \(\textrm{RW}^{\sigma_t, \rho_t}_{}\) </td> <td style="text-align:right;background-color: #88C567 !important;"> 9.40 </td> <td style="text-align:right;background-color: #93C966 !important;"> 3.75 </td> <td style="text-align:right;background-color: #FFD346 !important;"> -0.41 </td> <td style="text-align:right;background-color: #84C467 !important;"> 11.39 </td> <td style="text-align:right;background-color: #84C467 !important;"> 4.13 </td> <td style="text-align:right;background-color: #A2CE64 !important;"> 10.34 </td> <td style="text-align:right;background-color: #9BCC65 !important;"> 9.10 </td> <td style="text-align:right;background-color: #A5CF64 !important;"> 7.59 </td> </tr> <tr> <td style="text-align:left;"> \(\textrm{RW}^{\sigma, \rho_t}_{\textrm{ncp}, \textrm{log}}\) </td> <td style="text-align:right;background-color: #6DBC69 !important;"> 12.04 </td> <td style="text-align:right;background-color: #7FC268 !important;"> 6.16 </td> <td style="text-align:right;background-color: #FFD849 !important;"> -0.56 </td> <td style="text-align:right;background-color: #6ABB6A !important;"> 14.33 </td> <td style="text-align:right;background-color: #66BA6A !important;"> 7.35 </td> <td style="text-align:right;background-color: #8DC766 !important;"> 9.22 </td> <td style="text-align:right;background-color: #94C966 !important;"> 9.82 </td> <td style="text-align:right;background-color: #90C866 !important;"> 10.02 </td> </tr> <tr> <td style="text-align:left;"> \(\textrm{RW}^{\sigma, \rho}_{\textrm{log}}\) </td> <td style="text-align:right;background-color: #6DBC69 !important;"> 12.10 </td> <td style="text-align:right;background-color: #7BC168 !important;"> 6.25 </td> <td style="text-align:right;background-color: #FFD245 !important;"> -0.59 </td> <td style="text-align:right;background-color: #6ABB6A !important;"> 14.44 </td> <td style="text-align:right;background-color: #66BA6A !important;"> 7.31 </td> <td style="text-align:right;background-color: #8EC766 !important;"> 9.04 </td> <td style="text-align:right;background-color: #93C966 !important;"> 9.66 </td> <td style="text-align:right;background-color: #91C866 !important;"> 9.91 </td> </tr> <tr> <td style="text-align:left;"> \(\textrm{VECM}^{\textrm{r0}, \sigma_t, \rho_t}_{\textrm{lev}, \textrm{ncp}}\) </td> <td style="text-align:right;background-color: #82C368 !important;"> 9.68 </td> <td style="text-align:right;background-color: #FFC53C !important;"> -0.72 </td> <td style="text-align:right;font-weight: bold;background-color: #E6E55C !important;"> 0.32 </td> <td style="text-align:right;background-color: #7FC268 !important;"> 11.74 </td> <td style="text-align:right;background-color: #88C567 !important;"> 3.70 </td> <td style="text-align:right;font-weight: bold;background-color: #9BCC65 !important;"> 10.82 </td> <td style="text-align:right;font-weight: bold;background-color: #9CCC65 !important;"> 10.50 </td> <td style="text-align:right;background-color: #99CB65 !important;"> 8.21 </td> </tr> <tr> <td style="text-align:left;"> \(\textrm{VECM}^{\textrm{r0}, \sigma, \rho_t}_{\textrm{log}}\) </td> <td style="text-align:right;font-weight: bold;background-color: #6DBC69 !important;"> 12.15 </td> <td style="text-align:right;background-color: #71BD69 !important;"> 6.10 </td> <td style="text-align:right;background-color: #FFCD42 !important;"> -0.70 </td> <td style="text-align:right;font-weight: bold;background-color: #6ABB6A !important;"> 14.57 </td> <td style="text-align:right;background-color: #66BA6A !important;"> 7.80 </td> <td style="text-align:right;background-color: #93C966 !important;"> 8.05 </td> <td style="text-align:right;background-color: #98CB65 !important;"> 9.99 </td> <td style="text-align:right;font-weight: bold;background-color: #92C966 !important;"> 10.04 </td> </tr> <tr> <td style="text-align:left;"> \(\textrm{ETS}^{\sigma}\) </td> <td style="text-align:right;background-color: #78C069 !important;"> 9.94 </td> <td style="text-align:right;background-color: #88C567 !important;"> 5.75 </td> <td style="text-align:right;background-color: #F6EA5A !important;"> 0.08 </td> <td style="text-align:right;background-color: #6EBC69 !important;"> 13.05 </td> <td style="text-align:right;background-color: #8CC767 !important;"> 7.83 </td> <td style="text-align:right;background-color: #ABD163 !important;"> 6.96 </td> <td style="text-align:right;background-color: #A2CE64 !important;"> 7.74 </td> <td style="text-align:right;background-color: #AED263 !important;"> 6.21 </td> </tr> <tr> <td style="text-align:left;"> \(\textrm{ETS}^{\sigma}_{\textrm{log}}\) </td> <td style="text-align:right;background-color: #92C966 !important;"> 8.12 </td> <td style="text-align:right;font-weight: bold;background-color: #85C467 !important;"> 7.80 </td> <td style="text-align:right;background-color: #FFD84A !important;"> -0.51 </td> <td style="text-align:right;background-color: #87C567 !important;"> 11.17 </td> <td style="text-align:right;font-weight: bold;background-color: #94C966 !important;"> 8.54 </td> <td style="text-align:right;background-color: #CDDC60 !important;"> 5.05 </td> <td style="text-align:right;background-color: #C9DB60 !important;"> 6.14 </td> <td style="text-align:right;background-color: #E7E55C !important;"> 2.66 </td> </tr> <tr> <td style="text-align:left;"> \(\textrm{VES}^{\sigma}\) </td> <td style="text-align:right;background-color: #A7D064 !important;"> 5.50 </td> <td style="text-align:right;background-color: #FFB531 !important;"> -4.43 </td> <td style="text-align:right;background-color: #FFB330 !important;"> -3.22 </td> <td style="text-align:right;background-color: #A5CF64 !important;"> 6.29 </td> <td style="text-align:right;background-color: #BCD762 !important;"> 4.68 </td> <td style="text-align:right;background-color: #FB8F38 !important;"> -25.99 </td> <td style="text-align:right;background-color: #FFDC4C !important;"> -2.42 </td> <td style="text-align:right;background-color: #D7E05E !important;"> 3.07 </td> </tr> <tr> <td style="text-align:left;"> \(\textrm{VES}^{\sigma}_{\textrm{log}}\) </td> <td style="text-align:right;background-color: #97CB65 !important;"> 7.68 </td> <td style="text-align:right;background-color: #C0D861 !important;"> 3.31 </td> <td style="text-align:right;background-color: #FFA329 !important;"> -4.34 </td> <td style="text-align:right;background-color: #95CA66 !important;"> 9.07 </td> <td style="text-align:right;background-color: #85C467 !important;"> 8.30 </td> <td style="text-align:right;background-color: #FC9733 !important;"> -22.11 </td> <td style="text-align:right;background-color: #F6EA5A !important;"> 1.07 </td> <td style="text-align:right;background-color: #D2DE5F !important;"> 4.32 </td> </tr> </tbody> </table> ] .pull-right[ - Benchmarks: - `\(\text{RW}^{\sigma, \rho}\)`: Random walk with constant volatility and correlation - Univariate `\(\text{ETS}^{\sigma}\)` with constant volatility - Vector ETS `\(VES^{\sigma}\)` with constant volatility - Heteroscedasticity is a main driver of ES - The VECM model without cointegration (essentially a VAR) is the best performing model in terms of ES overall - For EUA, the ETS Benchmark is the best performing model in terms of ES ] --- # CRPS Scores .pull-left-3[ - CRPS solely evaluates the marginal distributions - The cross-sectional dependence is ignored - VES models deliver poor performance in short horizons - For Oil prices the RW Benchmark can't be oupterformed 30 steps ahead - Both VECM models generally deliver good performance ] .pull-right-3[ .font80[ Improvement in CRPS of selected models relative to `\(\textrm{RW}^{\sigma, \rho}_{}\)` in % (higher = better). Colored according to the test statistic of a DM-Test comparing to `\(\textrm{RW}^{\sigma, \rho}_{}\)` (greener means lower test statistic i.e., better performance compared to `\(\textrm{RW}^{\sigma, \rho}_{}\)`). ] <table class=" lightable-paper table table-condensed" style='font-family: "Arial Narrow", arial, helvetica, sans-serif; width: auto !important; margin-left: auto; margin-right: auto; font-size: 16px; width: auto !important; margin-left: auto; margin-right: auto;'> <thead> <tr> <th style="empty-cells: hide;" colspan="1"></th> <th style="padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; " colspan="3"><div style="border-bottom: 1px solid #00000020; padding-bottom: 5px; ">EUA</div></th> <th style="padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; " colspan="3"><div style="border-bottom: 1px solid #00000020; padding-bottom: 5px; ">Oil</div></th> <th style="padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; " colspan="3"><div style="border-bottom: 1px solid #00000020; padding-bottom: 5px; ">NGas</div></th> <th style="padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; " colspan="3"><div style="border-bottom: 1px solid #00000020; padding-bottom: 5px; ">Coal</div></th> </tr> <tr> <th style="text-align:left;"> Model </th> <th style="text-align:right;"> H1 </th> <th style="text-align:right;"> H5 </th> <th style="text-align:right;"> H30 </th> <th style="text-align:right;"> H1 </th> <th style="text-align:right;"> H5 </th> <th style="text-align:right;"> H30 </th> <th style="text-align:right;"> H1 </th> <th style="text-align:right;"> H5 </th> <th style="text-align:right;"> H30 </th> <th style="text-align:right;"> H1 </th> <th style="text-align:right;"> H5 </th> <th style="text-align:right;"> H30 </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> \(\textrm{RW}^{\sigma, \rho}_{}\) </td> <td style="text-align:right;background-color: rgba(189, 189, 189, 1) !important;"> 0.4 </td> <td style="text-align:right;background-color: rgba(189, 189, 189, 1) !important;"> 0.9 </td> <td style="text-align:right;background-color: rgba(189, 189, 189, 1) !important;"> 2.1 </td> <td style="text-align:right;background-color: rgba(189, 189, 189, 1) !important;"> 1.5 </td> <td style="text-align:right;background-color: rgba(189, 189, 189, 1) !important;"> 3.4 </td> <td style="text-align:right;font-weight: bold;background-color: rgba(189, 189, 189, 1) !important;"> 9.1 </td> <td style="text-align:right;background-color: rgba(189, 189, 189, 1) !important;"> 4.7 </td> <td style="text-align:right;background-color: rgba(189, 189, 189, 1) !important;"> 11.6 </td> <td style="text-align:right;background-color: rgba(189, 189, 189, 1) !important;"> 29.8 </td> <td style="text-align:right;background-color: rgba(189, 189, 189, 1) !important;"> 0.3 </td> <td style="text-align:right;background-color: rgba(189, 189, 189, 1) !important;"> 0.9 </td> <td style="text-align:right;background-color: rgba(189, 189, 189, 1) !important;"> 2.8 </td> </tr> <tr> <td style="text-align:left;"> \(\textrm{RW}^{\sigma_t, \rho_t}_{}\) </td> <td style="text-align:right;font-weight: bold;background-color: #96CA66 !important;"> 5.6 </td> <td style="text-align:right;background-color: #90C866 !important;"> 6.0 </td> <td style="text-align:right;background-color: #C8DB60 !important;"> 2.8 </td> <td style="text-align:right;background-color: #BED761 !important;"> 2.1 </td> <td style="text-align:right;background-color: #98CB65 !important;"> 2.7 </td> <td style="text-align:right;background-color: #FFC73E !important;"> -0.8 </td> <td style="text-align:right;background-color: #A3CF64 !important;"> 12.6 </td> <td style="text-align:right;background-color: #A2CE64 !important;"> 10.5 </td> <td style="text-align:right;background-color: #A1CE64 !important;"> 9.6 </td> <td style="text-align:right;background-color: #88C567 !important;"> 10.7 </td> <td style="text-align:right;background-color: #94CA66 !important;"> 6.5 </td> <td style="text-align:right;background-color: #B3D463 !important;"> 2.1 </td> </tr> <tr> <td style="text-align:left;"> \(\textrm{RW}^{\sigma, \rho_t}_{\textrm{ncp}, \textrm{log}}\) </td> <td style="text-align:right;background-color: #9CCC65 !important;"> 5.1 </td> <td style="text-align:right;background-color: #7AC068 !important;"> 8.7 </td> <td style="text-align:right;background-color: #A9D064 !important;"> 5.0 </td> <td style="text-align:right;background-color: #E3E45D !important;"> 0.7 </td> <td style="text-align:right;background-color: #E3E45C !important;"> 0.8 </td> <td style="text-align:right;background-color: #FFE04F !important;"> -0.4 </td> <td style="text-align:right;background-color: #8EC766 !important;"> 11.4 </td> <td style="text-align:right;background-color: #96CA66 !important;"> 11.5 </td> <td style="text-align:right;background-color: #8FC866 !important;"> 12.4 </td> <td style="text-align:right;background-color: #77BF69 !important;"> 8.0 </td> <td style="text-align:right;background-color: #7FC268 !important;"> 7.3 </td> <td style="text-align:right;background-color: #7CC168 !important;"> 6.7 </td> </tr> <tr> <td style="text-align:left;"> \(\textrm{RW}^{\sigma, \rho}_{\textrm{log}}\) </td> <td style="text-align:right;background-color: #A3CF64 !important;"> 4.7 </td> <td style="text-align:right;background-color: #76BF69 !important;"> 8.9 </td> <td style="text-align:right;background-color: #A2CE64 !important;"> 5.2 </td> <td style="text-align:right;background-color: #FFEC57 !important;"> 0.0 </td> <td style="text-align:right;background-color: #F3E95A !important;"> 0.3 </td> <td style="text-align:right;background-color: #FFD84A !important;"> -0.6 </td> <td style="text-align:right;background-color: #8EC766 !important;"> 11.2 </td> <td style="text-align:right;background-color: #95CA66 !important;"> 11.4 </td> <td style="text-align:right;background-color: #8FC866 !important;"> 12.4 </td> <td style="text-align:right;background-color: #77C069 !important;"> 7.7 </td> <td style="text-align:right;background-color: #7FC268 !important;"> 7.5 </td> <td style="text-align:right;background-color: #7BC168 !important;"> 6.6 </td> </tr> <tr> <td style="text-align:left;"> \(\textrm{VECM}^{\textrm{r0}, \sigma_t, \rho_t}_{\textrm{lev}, \textrm{ncp}}\) </td> <td style="text-align:right;background-color: #9BCC65 !important;"> 3.6 </td> <td style="text-align:right;background-color: #E7E55C !important;"> 0.6 </td> <td style="text-align:right;background-color: #FFA928 !important;"> -1.6 </td> <td style="text-align:right;font-weight: bold;background-color: #B1D363 !important;"> 2.7 </td> <td style="text-align:right;font-weight: bold;background-color: #9DCD65 !important;"> 3.0 </td> <td style="text-align:right;background-color: #FFED58 !important;"> 0.0 </td> <td style="text-align:right;font-weight: bold;background-color: #9CCC65 !important;"> 13.1 </td> <td style="text-align:right;font-weight: bold;background-color: #A1CE64 !important;"> 12.2 </td> <td style="text-align:right;background-color: #98CB65 !important;"> 10.4 </td> <td style="text-align:right;font-weight: bold;background-color: #8EC766 !important;"> 11.8 </td> <td style="text-align:right;background-color: #92C966 !important;"> 7.2 </td> <td style="text-align:right;background-color: #C5DA60 !important;"> 1.5 </td> </tr> <tr> <td style="text-align:left;"> \(\textrm{VECM}^{\textrm{r0}, \sigma, \rho_t}_{\textrm{log}}\) </td> <td style="text-align:right;background-color: #B2D363 !important;"> 4.2 </td> <td style="text-align:right;font-weight: bold;background-color: #72BE69 !important;"> 8.9 </td> <td style="text-align:right;background-color: #99CB65 !important;"> 5.1 </td> <td style="text-align:right;background-color: #FAEB59 !important;"> 0.2 </td> <td style="text-align:right;background-color: #EFE85B !important;"> 0.4 </td> <td style="text-align:right;background-color: #FFD044 !important;"> -0.8 </td> <td style="text-align:right;background-color: #94C966 !important;"> 9.9 </td> <td style="text-align:right;background-color: #9ACC65 !important;"> 11.8 </td> <td style="text-align:right;font-weight: bold;background-color: #90C866 !important;"> 12.7 </td> <td style="text-align:right;background-color: #7BC168 !important;"> 7.8 </td> <td style="text-align:right;font-weight: bold;background-color: #7DC168 !important;"> 7.9 </td> <td style="text-align:right;font-weight: bold;background-color: #79C068 !important;"> 7.3 </td> </tr> <tr> <td style="text-align:left;"> \(\textrm{ETS}^{\sigma}\) </td> <td style="text-align:right;background-color: #FCEC58 !important;"> 0.2 </td> <td style="text-align:right;background-color: #8DC766 !important;"> 6.8 </td> <td style="text-align:right;background-color: #A4CF64 !important;"> 5.7 </td> <td style="text-align:right;background-color: #C4D961 !important;"> 1.1 </td> <td style="text-align:right;background-color: #B1D363 !important;"> 0.9 </td> <td style="text-align:right;background-color: #FFDF4F !important;"> -0.2 </td> <td style="text-align:right;background-color: #99CB65 !important;"> 10.9 </td> <td style="text-align:right;background-color: #98CB65 !important;"> 11.3 </td> <td style="text-align:right;background-color: #94C966 !important;"> 10.9 </td> <td style="text-align:right;background-color: #B7D562 !important;"> 7.5 </td> <td style="text-align:right;background-color: #BCD762 !important;"> 6.7 </td> <td style="text-align:right;background-color: #C7DA60 !important;"> 5.6 </td> </tr> <tr> <td style="text-align:left;"> \(\textrm{ETS}^{\sigma}_{\textrm{log}}\) </td> <td style="text-align:right;background-color: #EFE85B !important;"> 1.0 </td> <td style="text-align:right;background-color: #80C268 !important;"> 8.6 </td> <td style="text-align:right;font-weight: bold;background-color: #A0CE64 !important;"> 8.0 </td> <td style="text-align:right;background-color: #FCEC58 !important;"> 0.1 </td> <td style="text-align:right;background-color: #E9E65C !important;"> 0.7 </td> <td style="text-align:right;background-color: #FFDA4B !important;"> -0.6 </td> <td style="text-align:right;background-color: #B8D562 !important;"> 8.9 </td> <td style="text-align:right;background-color: #BBD762 !important;"> 9.4 </td> <td style="text-align:right;background-color: #C9DB60 !important;"> 7.1 </td> <td style="text-align:right;background-color: #C1D861 !important;"> 7.3 </td> <td style="text-align:right;background-color: #B7D562 !important;"> 7.8 </td> <td style="text-align:right;background-color: #C8DB60 !important;"> 6.7 </td> </tr> <tr> <td style="text-align:left;"> \(\textrm{VES}^{\sigma}\) </td> <td style="text-align:right;background-color: #F1634B !important;"> -38.5 </td> <td style="text-align:right;background-color: #FFBE38 !important;"> -6.4 </td> <td style="text-align:right;background-color: #FFBC36 !important;"> -5.4 </td> <td style="text-align:right;background-color: #F05D4D !important;"> -33.3 </td> <td style="text-align:right;background-color: #FFB934 !important;"> -6.1 </td> <td style="text-align:right;background-color: #FFC43B !important;"> -2.4 </td> <td style="text-align:right;background-color: #FE9E2D !important;"> -26.6 </td> <td style="text-align:right;background-color: #FFDE4E !important;"> -2.6 </td> <td style="text-align:right;background-color: #D7E05E !important;"> 3.6 </td> <td style="text-align:right;background-color: #F57146 !important;"> -37.5 </td> <td style="text-align:right;background-color: #FFCB40 !important;"> -5.5 </td> <td style="text-align:right;background-color: #CBDC60 !important;"> 4.7 </td> </tr> <tr> <td style="text-align:left;"> \(\textrm{VES}^{\sigma}_{\textrm{log}}\) </td> <td style="text-align:right;background-color: #F88140 !important;"> -32.4 </td> <td style="text-align:right;background-color: #E3E45C !important;"> 2.8 </td> <td style="text-align:right;background-color: #E8E55C !important;"> 1.8 </td> <td style="text-align:right;background-color: #F2654B !important;"> -30.4 </td> <td style="text-align:right;background-color: #FFB632 !important;"> -6.2 </td> <td style="text-align:right;background-color: #FFB934 !important;"> -3.2 </td> <td style="text-align:right;background-color: #FFA626 !important;"> -22.0 </td> <td style="text-align:right;background-color: #F2E95A !important;"> 1.8 </td> <td style="text-align:right;background-color: #CFDD5F !important;"> 5.4 </td> <td style="text-align:right;background-color: #FC9733 !important;"> -27.0 </td> <td style="text-align:right;background-color: #ECE75B !important;"> 2.3 </td> <td style="text-align:right;background-color: #AAD164 !important;"> 6.4 </td> </tr> </tbody> </table> ] --- # RMSE .pull-right-3[ Improvement in RMSE score of selected models relative to `\(\textrm{RW}^{\sigma, \rho}_{}\)` in % (higher = better). Colored according to the test statistic of a DM-Test comparing to `\(\textrm{RW}^{\sigma, \rho}_{}\)` (greener means lower test statistic i.e., better performance compared to `\(\textrm{RW}^{\sigma, \rho}_{}\)`). <table class=" lightable-paper table table-condensed" style='font-family: "Arial Narrow", arial, helvetica, sans-serif; width: auto !important; margin-left: auto; margin-right: auto; font-size: 14px; width: auto !important; margin-left: auto; margin-right: auto;'> <thead> <tr> <th style="text-align:left;"> Model </th> <th style="text-align:right;"> H1 </th> <th style="text-align:right;"> H5 </th> <th style="text-align:right;"> H30 </th> <th style="text-align:right;"> H1 </th> <th style="text-align:right;"> H5 </th> <th style="text-align:right;"> H30 </th> <th style="text-align:right;"> H1 </th> <th style="text-align:right;"> H5 </th> <th style="text-align:right;"> H30 </th> <th style="text-align:right;"> H1 </th> <th style="text-align:right;"> H5 </th> <th style="text-align:right;"> H30 </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> \(\textrm{RW}^{\sigma, \rho}_{}\) </td> <td style="text-align:right;font-weight: bold;background-color: rgba(189, 189, 189, 1) !important;"> 0.9 </td> <td style="text-align:right;background-color: rgba(189, 189, 189, 1) !important;"> 2.0 </td> <td style="text-align:right;background-color: rgba(189, 189, 189, 1) !important;"> 5.0 </td> <td style="text-align:right;background-color: rgba(189, 189, 189, 1) !important;"> 2.9 </td> <td style="text-align:right;background-color: rgba(189, 189, 189, 1) !important;"> 6.4 </td> <td style="text-align:right;font-weight: bold;background-color: rgba(189, 189, 189, 1) !important;"> 16.7 </td> <td style="text-align:right;background-color: rgba(189, 189, 189, 1) !important;"> 17.8 </td> <td style="text-align:right;background-color: rgba(189, 189, 189, 1) !important;"> 42.8 </td> <td style="text-align:right;background-color: rgba(189, 189, 189, 1) !important;"> 85.4 </td> <td style="text-align:right;background-color: rgba(189, 189, 189, 1) !important;"> 0.9 </td> <td style="text-align:right;background-color: rgba(189, 189, 189, 1) !important;"> 2.9 </td> <td style="text-align:right;background-color: rgba(189, 189, 189, 1) !important;"> 7.0 </td> </tr> <tr> <td style="text-align:left;"> \(\textrm{RW}^{\sigma_t, \rho_t}_{}\) </td> <td style="text-align:right;background-color: #FFE653 !important;"> -0.1 </td> <td style="text-align:right;background-color: #FFE150 !important;"> -0.1 </td> <td style="text-align:right;background-color: #B4D462 !important;"> 0.7 </td> <td style="text-align:right;background-color: #FBEC59 !important;"> 0.0 </td> <td style="text-align:right;background-color: #FFC93F !important;"> -0.3 </td> <td style="text-align:right;background-color: #FFDF4E !important;"> -0.1 </td> <td style="text-align:right;background-color: #FFE14F !important;"> -0.2 </td> <td style="text-align:right;background-color: #CADB60 !important;"> 0.3 </td> <td style="text-align:right;font-weight: bold;background-color: #CFDD5F !important;"> 1.3 </td> <td style="text-align:right;background-color: #FFE754 !important;"> -0.2 </td> <td style="text-align:right;background-color: #FFED58 !important;"> 0.0 </td> <td style="text-align:right;background-color: #FFCE42 !important;"> -1.8 </td> </tr> <tr> <td style="text-align:left;"> \(\textrm{RW}^{\sigma, \rho_t}_{\textrm{ncp}, \textrm{log}}\) </td> <td style="text-align:right;background-color: #FFD145 !important;"> -270.5 </td> <td style="text-align:right;background-color: #FFB833 !important;"> -154.1 </td> <td style="text-align:right;background-color: #FD9C2F !important;"> -139.9 </td> <td style="text-align:right;background-color: #C0D861 !important;"> 0.5 </td> <td style="text-align:right;background-color: #FFDD4D !important;"> -0.5 </td> <td style="text-align:right;background-color: #FFD547 !important;"> -2.9 </td> <td style="text-align:right;background-color: #FFD044 !important;"> -0.8 </td> <td style="text-align:right;background-color: #E5E45C !important;"> 0.7 </td> <td style="text-align:right;background-color: #FFE250 !important;"> -1.6 </td> <td style="text-align:right;background-color: #E2E35D !important;"> 0.3 </td> <td style="text-align:right;background-color: #FFD044 !important;"> -31.2 </td> <td style="text-align:right;background-color: #FFBB35 !important;"> -24.5 </td> </tr> <tr> <td style="text-align:left;"> \(\textrm{RW}^{\sigma, \rho}_{\textrm{log}}\) </td> <td style="text-align:right;background-color: #FFCB40 !important;"> -705.0 </td> <td style="text-align:right;background-color: #FFC93F !important;"> -265.4 </td> <td style="text-align:right;background-color: #FFAD2B !important;"> -125.2 </td> <td style="text-align:right;background-color: #B0D363 !important;"> 0.6 </td> <td style="text-align:right;font-weight: bold;background-color: #F5EA5A !important;"> 0.2 </td> <td style="text-align:right;background-color: #FFE754 !important;"> -0.2 </td> <td style="text-align:right;background-color: #FFDE4D !important;"> -0.4 </td> <td style="text-align:right;background-color: #FBEC59 !important;"> 0.1 </td> <td style="text-align:right;background-color: #FFE251 !important;"> -1.6 </td> <td style="text-align:right;background-color: #FFC13A !important;"> -0.9 </td> <td style="text-align:right;background-color: #FFE250 !important;"> -0.3 </td> <td style="text-align:right;background-color: #FFC73D !important;"> -8.3 </td> </tr> <tr> <td style="text-align:left;"> \(\textrm{VECM}^{\textrm{r0}, \sigma_t, \rho_t}_{\textrm{lev}, \textrm{ncp}}\) </td> <td style="text-align:right;background-color: #FFDA4B !important;"> -0.9 </td> <td style="text-align:right;background-color: #F1E85A !important;"> 0.2 </td> <td style="text-align:right;background-color: #C6DA60 !important;"> 0.5 </td> <td style="text-align:right;background-color: #E4E45C !important;"> 0.5 </td> <td style="text-align:right;background-color: #F0E85A !important;"> 0.2 </td> <td style="text-align:right;background-color: #FFEB56 !important;"> 0.0 </td> <td style="text-align:right;background-color: #FFE754 !important;"> -0.4 </td> <td style="text-align:right;background-color: #CBDC60 !important;"> 0.7 </td> <td style="text-align:right;background-color: #EFE85B !important;"> 0.2 </td> <td style="text-align:right;font-weight: bold;background-color: #E0E35D !important;"> 1.4 </td> <td style="text-align:right;font-weight: bold;background-color: #F1E85A !important;"> 0.1 </td> <td style="text-align:right;background-color: #EAE65B !important;"> 0.2 </td> </tr> <tr> <td style="text-align:left;"> \(\textrm{VECM}^{\textrm{r0}, \sigma, \rho_t}_{\textrm{log}}\) </td> <td style="text-align:right;background-color: #FFD145 !important;"> -271.5 </td> <td style="text-align:right;background-color: #FFB934 !important;"> -191.3 </td> <td style="text-align:right;background-color: #FE9F2D !important;"> -114.3 </td> <td style="text-align:right;font-weight: bold;background-color: #CBDC60 !important;"> 1.7 </td> <td style="text-align:right;background-color: #FFD145 !important;"> -12.3 </td> <td style="text-align:right;background-color: #FFC43C !important;"> -3.6 </td> <td style="text-align:right;background-color: #FFDF4E !important;"> -0.6 </td> <td style="text-align:right;font-weight: bold;background-color: #E1E35D !important;"> 1.6 </td> <td style="text-align:right;background-color: #FFDA4B !important;"> -4.1 </td> <td style="text-align:right;background-color: #FFEB57 !important;"> 0.0 </td> <td style="text-align:right;background-color: #FFD447 !important;"> -0.8 </td> <td style="text-align:right;background-color: #FFDD4D !important;"> -6.7 </td> </tr> <tr> <td style="text-align:left;"> \(\textrm{ETS}^{\sigma}\) </td> <td style="text-align:right;background-color: #FFE452 !important;"> -0.3 </td> <td style="text-align:right;background-color: #F0E85B !important;"> 0.3 </td> <td style="text-align:right;background-color: #D8E05E !important;"> 1.6 </td> <td style="text-align:right;background-color: #D0DD5F !important;"> 0.7 </td> <td style="text-align:right;background-color: #F4E95A !important;"> 0.1 </td> <td style="text-align:right;background-color: #FFDD4D !important;"> -0.1 </td> <td style="text-align:right;font-weight: bold;background-color: #F0E85A !important;"> 0.1 </td> <td style="text-align:right;background-color: #FFD648 !important;"> -0.1 </td> <td style="text-align:right;background-color: #E5E45C !important;"> 0.2 </td> <td style="text-align:right;background-color: #FFD849 !important;"> -2.4 </td> <td style="text-align:right;background-color: #FFC63D !important;"> -3.9 </td> <td style="text-align:right;font-weight: bold;background-color: #E6E55C !important;"> 2.5 </td> </tr> <tr> <td style="text-align:left;"> \(\textrm{ETS}^{\sigma}_{\textrm{log}}\) </td> <td style="text-align:right;background-color: #FFCE43 !important;"> -1.0 </td> <td style="text-align:right;font-weight: bold;background-color: #F5EA5A !important;"> 0.4 </td> <td style="text-align:right;font-weight: bold;background-color: #ECE75B !important;"> 1.6 </td> <td style="text-align:right;background-color: #C7DA60 !important;"> 0.9 </td> <td style="text-align:right;background-color: #FFED58 !important;"> 0.0 </td> <td style="text-align:right;background-color: #FFEA56 !important;"> -0.1 </td> <td style="text-align:right;background-color: #FFD447 !important;"> -1.9 </td> <td style="text-align:right;background-color: #FFE150 !important;"> -1.9 </td> <td style="text-align:right;background-color: #FFCE42 !important;"> -13.9 </td> <td style="text-align:right;background-color: #FFE250 !important;"> -0.3 </td> <td style="text-align:right;background-color: #FFCD42 !important;"> -3.6 </td> <td style="text-align:right;background-color: #FFE452 !important;"> -1.8 </td> </tr> <tr> <td style="text-align:left;"> \(\textrm{VES}^{\sigma}\) </td> <td style="text-align:right;background-color: #FFA828 !important;"> -37.4 </td> <td style="text-align:right;background-color: #FFBC36 !important;"> -8.9 </td> <td style="text-align:right;background-color: #FFBC36 !important;"> -6.0 </td> <td style="text-align:right;background-color: #FD9931 !important;"> -27.9 </td> <td style="text-align:right;background-color: #FFC53C !important;"> -7.4 </td> <td style="text-align:right;background-color: #FFB430 !important;"> -2.8 </td> <td style="text-align:right;background-color: #FFAB2A !important;"> -27.2 </td> <td style="text-align:right;background-color: #FFB732 !important;"> -9.5 </td> <td style="text-align:right;background-color: #FFDD4D !important;"> -2.4 </td> <td style="text-align:right;background-color: #FFC038 !important;"> -41.7 </td> <td style="text-align:right;background-color: #FFDA4B !important;"> -1.2 </td> <td style="text-align:right;background-color: #D4DF5F !important;"> 1.6 </td> </tr> <tr> <td style="text-align:left;"> \(\textrm{VES}^{\sigma}_{\textrm{log}}\) </td> <td style="text-align:right;background-color: #FFAA29 !important;"> -37.6 </td> <td style="text-align:right;background-color: #FFBD37 !important;"> -9.2 </td> <td style="text-align:right;background-color: #FFBA35 !important;"> -7.8 </td> <td style="text-align:right;background-color: #FD9A30 !important;"> -26.8 </td> <td style="text-align:right;background-color: #FFC63D !important;"> -7.3 </td> <td style="text-align:right;background-color: #FFBE37 !important;"> -3.0 </td> <td style="text-align:right;background-color: #FFAC2A !important;"> -27.0 </td> <td style="text-align:right;background-color: #FFC33B !important;"> -6.8 </td> <td style="text-align:right;background-color: #FFD144 !important;"> -3.5 </td> <td style="text-align:right;background-color: #FFC139 !important;"> -41.2 </td> <td style="text-align:right;background-color: #FFC43C !important;"> -2.2 </td> <td style="text-align:right;background-color: #FFE855 !important;"> -0.3 </td> </tr> </tbody> </table> ] .pull-left-3[ RMSE measures the performance of the forecasts at their mean </br> - Some models beat the benchmarks at short horizons </br> Conclusion: the Improvements seen before must be attributed to other parts of the multivariate probabilistic predictive distribution ] --- # Evolution of Linear Dependence `\(\Xi\)` <img src="data:image/png;base64,#index_files/figure-html/unnamed-chunk-5-1.svg" style="display: block; margin: auto;" /> --- # Predictive Quantiles (Russian Invasion) <img src="data:image/png;base64,#index_files/figure-html/unnamed-chunk-6-1.svg" style="display: block; margin: auto;" /> --- # Conclusion .pull-left[ Accounting for heteroscedasticity or stabilizing the variance via log transformation is crucial for good performance in terms of ES - Price dynamics emerged way before the russian invaion into ukraine - Linear dependence between the series reacted only right after the invasion - Improvements in forecasting performance is mainly attributed to: - the tails multivariate probabilistic predictive distribution - the dependence structure between the marginals ] .pull-right[ </br> <center> <img src="fig/frame.png"> </center>
<a id='cite-berrisch2023modeling'></a><a href='#bib-berrisch2023modeling'>Berrisch, Pappert, Ziel, and Arsova (2023)</a> ] <a href="https://github.com/BerriJ" class="github-corner" aria-label="View source on Github"><svg width="80" height="80" viewBox="0 0 250 250" style="fill:#f2f2f2; color:#212121; position: absolute; top: 0; border: 0; right: 0;" aria-hidden="true"><path d="M0,0 L115,115 L130,115 L142,142 L250,250 L250,0 Z"></path><path d="M128.3,109.0 C113.8,99.7 119.0,89.6 119.0,89.6 C122.0,82.7 120.5,78.6 120.5,78.6 C119.2,72.0 123.4,76.3 123.4,76.3 C127.3,80.9 125.5,87.3 125.5,87.3 C122.9,97.6 130.6,101.9 134.4,103.2" fill="currentColor" style="transform-origin: 130px 106px;" class="octo-arm"></path><path d="M115.0,115.0 C114.9,115.1 118.7,116.5 119.8,115.4 L133.7,101.6 C136.9,99.2 139.9,98.4 142.2,98.6 C133.8,88.0 127.5,74.4 143.8,58.0 C148.5,53.4 154.0,51.2 159.7,51.0 C160.3,49.4 163.2,43.6 171.4,40.1 C171.4,40.1 176.1,42.5 178.8,56.2 C183.1,58.6 187.2,61.8 190.9,65.4 C194.5,69.0 197.7,73.2 200.1,77.6 C213.8,80.2 216.3,84.9 216.3,84.9 C212.7,93.1 206.9,96.0 205.4,96.6 C205.1,102.4 203.0,107.8 198.3,112.5 C181.9,128.9 168.3,122.5 157.7,114.1 C157.9,116.9 156.7,120.9 152.7,124.9 L141.0,136.5 C139.8,137.7 141.6,141.9 141.8,141.8 Z" fill="currentColor" class="octo-body"></path></svg></a><style>.github-corner:hover .octo-arm{animation:octocat-wave 560ms ease-in-out}@keyframes octocat-wave{0%,100%{transform:rotate(0)}20%,60%{transform:rotate(-25deg)}40%,80%{transform:rotate(10deg)}}@media (max-width:500px){.github-corner:hover .octo-arm{animation:none}.github-corner .octo-arm{animation:octocat-wave 560ms ease-in-out}}</style> --- name:references # References 1 <p><cite><a id='bib-berrisch2023modeling'></a><a href="#cite-berrisch2023modeling">Berrisch, J., S. Pappert, F. Ziel, et al.</a> (2023). “Modeling volatility and dependence of European carbon and energy prices”. In: <em>Finance Research Letters</em> 52, p. 103503.</cite></p>